Abstract: Matrix multiplication is one of the most important operations in both scientific computing and deep-learning applications. However, on regular processors such as CPUs and GPUs, the ...
Abstract: Distributed computations, such as distributed matrix multiplication, can be vulnerable to significant security issues, notably Byzantine attacks. These attacks may target either worker nodes ...
Creative Commons (CC): This is a Creative Commons license. Attribution (BY): Credit must be given to the creator. Implementations of matrix multiplication via diffusion and reactions, thus eliminating ...
Discover how nvmath-python leverages NVIDIA CUDA-X math libraries for high-performance matrix operations, optimizing deep learning tasks with epilog fusion, as detailed by Szymon Karpiński.
A new technical paper titled “Scalable MatMul-free Language Modeling” was published by UC Santa Cruz, Soochow University, UC Davis, and LuxiTech. “Matrix multiplication (MatMul) typically dominates ...
Researchers claim to have developed a new way to run AI language models more efficiently by eliminating matrix multiplication from the process. This fundamentally redesigns neural network operations ...
Large language models such as ChaptGPT have proven to be able to produce remarkably intelligent results, but the energy and monetary costs associated with running these massive algorithms is sky high.
I'm trying to restrict the problem, but for now it seems that with newer numpy versions on x64 certain complex products return different results depending on whether the operands are wrapped in a ...